UPRIGHT with STRUT and PLYWOOD SYSTEM

TABULATED DATA FOR TRENCH RESCUE SHORING (Note 1)

OSHA TYPE C-60 (Note 3)

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Upright</th>
<th>Maximum Vertical Strut Spacing (ft)</th>
<th>Maximum horizontal Strut Spacing (ft)</th>
<th>Allowable Trench Width (ft) (Note 2)</th>
<th>Sheeting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4x4</td>
<td>2x4+4x4</td>
</tr>
<tr>
<td>6</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>2x12</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>2x12</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Highlighted green = standard 2-4-2 system

OSHA TYPE C-80 (Note 4)

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Upright</th>
<th>Maximum Vertical Strut Spacing (ft)</th>
<th>Maximum horizontal Strut Spacing (ft)</th>
<th>Allowable Trench Width (ft) (Note 2)</th>
<th>Sheeting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4x4</td>
<td>2x4+4x4</td>
</tr>
<tr>
<td>6</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>2x12</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>2x12</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>2x12</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>2x12</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>2x12</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Highlighted green = standard 2-4-2 system

California State Fire Training
1131 S. Street
Sacramento, CA 95811

CER, Inc.
Construction Engineering Resource, Inc.
1837 Wright Street
Santa Rosa, CA 95404

Job #1373-1 10/1/2013
Drawn by: JT Sheet 1 of 3
UPRIGHT with STRUT and PLYWOOD SYSTEM

TABULATED DATA FOR
TRENCH RESCUE SHORING

Details

Wall Elevation

Framing Notes:
1) Use only 1 wedge set, do not stack them.
2) General rule for nailing strut connections-use two toe-nails (total 4 nails) on both sides of strut.
3) Struts may also be cut-to-fit and driven in without wedges.
4) Struts may also be manufactured, see Note 11.

Installation Notes
1) Uprights may be nailed to plywood before or after setting plywood into excavation.
2) Move spoil pile and obstructions a minimum of 2 ft from trench edge and place edge protection before installing shoring.
3) Place ladder within 25 ft of work. Ladder must be secure and accessible.
4) While working off a ladder and until top strut is secured, workers may only work within waist level to lip of trench and must be tied off.
5) Remove struts from bottom to top. If there is sheeting movement when bottom strut is removed, leave shoring in place and bury or remove with power equipment from outside the trench.
Notes

1) This shoring system is in accordance with Cal OSHA Article 6, Section 1541.1(c)(3) Option 3-Designs Using Other Tabulated Data. This tabulation is for the purpose of protecting rescue personnel from cave-ins while rescuing victims of collapsed excavations and trenches, and training and for no other purpose.

2) In order to use these tabulations the soil must first be classified as Type C-60 or C-80. The soil loading configuration is rectangular. This means that the soil pressure at the top of the excavation is the same as at the ultimate depth of the excavation. Read all element size and spacing requirements from the line at the depth the final excavation is expected to be (“original trench depth”).

3) C-60 Soil includes all soil types that will stand long enough to install shoring and have a water level at or below the bottom of the excavation.

4) Type C-80 soil is soil that will not stand up long enough to install shoring. Generally shoring in C-80 soil has to be installed in short increments or driven into the soil as excavation is taking place. Prior to reaching 12 ft deep in marine clays such as San Francisco "Bay Mud", Gulf States Swamp Mud, etc" an engineer should be consulted. If there is any additional deflection or movement after elements are installed additional upright and strutting may be required.

5) Minimum shoring system length is 2 sets. The general rule for shoring system length is that it should be at least as long as the shoring system is deep.

6) This tabulation includes loading from a spoil pile set back 2 feet from edge of trench and no higher than 4 ft and foot traffic. All heavy equipment and vehicles to be set back at least the depth of the trench.

7) Wood members shall be minimum Douglas fir #2 and better, S4S.

8) Plywood shall be minimum 3/4” CD X. Decrease horizontal spacing, double up plywood or decrease upright spacing if deflection is occurring due to soil movement.

9) Install strutting from top to bottom. Nailing can be done in stages by first using enough nails to stabilize shoring and then following through to make sure that required nail quantity is achieved.

10) This shoring system may be used in conjunction with Wale with Strut and Plywood System, and Trench End Shore System.

11) Alternative manufactured strut systems such as screw jacks, pneumatic struts, and single/double cylinder hydraulic jacks may be substituted for timber struts installed in accordance with their tabulated data.

12) If plywood is ¾” Finform it is OK to eliminate the 2x12 upright and use struts at the tabulated spacing nailed directly to the Finform.

13) Two ¾” CDX plywood sheets may be used in lieu of one sheet of ¾” CDX with a 2x12 upright.

14) Aluminum fire service ladders with 4x4 cribbing may be used as an upright or waler. (see CMC Trench Rescue Manual)
Tabulated Data for Trench Rescue Shoring

WALE with STRUT and PLYWOOD SYSTEM

TABULATED DATA FOR TRENCH RESCUE SHORING

OSHA TYPE C-60

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Upright</th>
<th>Maximum Vertical Strut Spacing (ft)</th>
<th>Maximum Horizontal Strut Spacing and Trench Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 12</td>
<td>4 x 4</td>
</tr>
<tr>
<td>6</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>2 x 12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2 x 12</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Sheeting

- 3/4" CDX plywood

OSHA TYPE C-80

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Upright</th>
<th>Maximum Vertical Strut Spacing (ft)</th>
<th>Maximum Horizontal Strut Spacing and Trench Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 12</td>
<td>4 x 4</td>
</tr>
<tr>
<td>6</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>2 x 12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>2 x 12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2 x 12</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Sheeting

- 3/4" CDX plywood

Highlighted green = standard "2-4-2 system

WALE with STRUT and PLYWOOD

California State Fire Training
1131 S. Street
Sacramento, Ca. 95811

CER, Inc.
Construction Engineering Resource, Inc.
1837 Wright Street
Santa Rosa, Ca. 95404

Job #1373-2
10/1/2013
Drawn by: JT
Sheet 1 of 3

Provided by CMC Rescue, Inc.
Copies of this form can be downloaded at cmcrescue.com/forms.
WALE with STRUT and PLYWOOD SYSTEM

TABULATED DATA FOR TRENCH RESCUE SHORING

Framing Notes:
1. Use only 1 wedge set, do not stack them.
2. General rule for nailing strut connections—use two toe-nails (total 4 nails) on both sides of strut.
3. Struts may also be cut-to-fit and driven in without wedges, or Ellis post screw jacks may be used.
4. Struts may also be manufactured, see Note 11.

Installation Notes:
1. Uprights may be nailed to plywood before or after setting plywood into excavation.
2. Move spoil pile and obstructions a minimum of 2 ft from trench edge and place edge protection before installing shoring.
3. Place ladder within 25 ft of work. Ladder must be secure and accessible.
4. While working off a ladder and until top strut is secured, workers may only work within waist level to lip of trench and must be tied off.
5. Remove struts from bottom to top. If there is sheathing movement when bottom strut is removed, leave shoring in place and bury or remove with power equipment from outside the trench.

California State Fire Training
1131 S. Street
Sacramento, Ca. 95811

CER, Inc.
Construction Engineering Resource, Inc.
1837 Wright Street
Santa Rosa, Ca. 95404

Job #1373-2
Drawn by: JT
Sheet 2 of 3

10/1/2013

Provided by CMC Rescue, Inc.
Copies of this form can be downloaded at cmcrescue.com/forms.
Tabulated Data for Trench Rescue Shoring

WALE with STRUT and PLYWOOD SYSTEM

<table>
<thead>
<tr>
<th>TABULATED DATA FOR TRENCH RESCUE SHORING</th>
</tr>
</thead>
</table>

Notes

1. This shoring system is in accordance with Cal OSHA Article 6, Section 1541.1(c)(3) Option 3-Designs Using Other Tabulated Data. This tabulation is for the purpose of protecting rescue personnel from cave-ins while rescuing victims of collapsed excavations and trenches, and training and for no other purpose.

2. In order to use these tabulations, the soil must first be classified as Type C-60 or C-80. The soil loading configuration is rectangular. This means that the soil pressure at the top of the excavation is the same as at the ultimate depth of the excavation. **Read all element size and spacing requirements from the line at the depth the final excavation is expected to be** ("original trench depth").

3. C-60 Soil includes all soil types that will stand long enough to install shoring and have a water level at or below the bottom of the excavation.

4. Type C-80 soil is soil that will not stand up long enough to install shoring. Generally, shoring in C-80 soil has to be installed in short increments or driven into the soil as excavation is taking place. Prior to reaching 12 ft deep in marine clay such as San Francisco "Bay Mud", Gulf States Swamp Mud, etc an engineer should be consulted. If there is any additional deflection or movement after elements are installed additional upright and strutting may be required.

5. Minimum shoring system length is 2 sets. **The general rule for shoring system length is that it should be at least as long as the shoring system is deep.**

6. This tabulation includes loading from a spoil pile set back 2 feet from edge of trench and no higher than 4 ft and foot traffic. All heavy equipment and vehicles to be set back at least the depth of the trench.

7. Wood members shall be minimum Douglas fir #2 and better, S4S.

8. **Plywood shall be minimum 3/4" CDX. Decrease horizontal spacing, double up plywood or decrease upright spacing if deflection is occurring due to soil movement.**

9. Install strutting from top to bottom. Nailing can be done in stages by first using enough nails to stabilize shoring and then following through to make sure that required nail quantity is achieved.

10. This shoring system may be used in conjunction with Upright with Strut and Plywood System, and Trench End Shore System.

11. Alternative manufactured strut systems such as screw jacks, pneumatic struts, and single/double cylinder hydraulic jacks may be substituted for timber struts installed in accordance with their tabulated data.

12. If plywood is ¾” Finform it is OK to eliminate the 2x12 upright and use struts at the tabulated spacing nailed directly to the Finform.

13. Two ¾” CDX plywood sheets may be used in lieu of one sheet of ¾” CDX with a 2x12 upright.

14. **Aluminum fire service ladders with 4x4 cribbing may be used as an upright or waler. (see CMC Trench Rescue Manual)**

California State Fire Training
1131 S. Street
Sacramento, Ca. 95811

CER, Inc.
Construction Engineering Resource, Inc.
1837 Wright Street
Santa Rosa, Ca. 95404

Job #375-2
10/1/2013

Drawn by: JT
Sheet 3 of 3

Copies of this form can be downloaded at cmcrescue.com/forms.
Trench End Shore System

Tabulated Data for Trench Rescue Shoring

OSHA Type C-60 (Note 3)

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Trench Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 ft</td>
</tr>
<tr>
<td></td>
<td>4 x 4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

OSHA Type C-80 (Note 4)

<table>
<thead>
<tr>
<th>Max Depth (ft)</th>
<th>Trench Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 ft</td>
</tr>
<tr>
<td></td>
<td>4 x 4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Sheeting (Note 8) C-60 and C-80

- **End Wall**: 3/4" CDX with shims at each waler/strut
- **Side Wall**: 3/4" CDX with 2x12 uprights

California State Fire Training
1131 S. Street
Sacramento, Ca. 95811

CER, Inc.
Construction Engineering Resource
1837 Wright St.
Santa Rosa, Ca. 95404

Job #1373-3 10/1/2013
Drawn by: JT Sheet 1 of 3
Tabulated Data for Trench Rescue Shoring

Trench End Shore System

Tabulated Data for Trench Rescue Shoring

Notes

1. This shoring system is in accordance with Cal OSHA Article 6, Section 1541.1(c)(3) Option 3. Designs Using Other Tabulated Data. This tabulation is for the purpose of protecting rescue personnel from cave-ins while rescuing victims of collapsed excavations and trenches, training and for no other purpose.

2. In order to use these tabulations the soil must first be classified as Type C-60 or C-80. The soil loading configuration is rectangular. This means that the soil pressure at the top of the excavation is the same as at the ultimate depth of the excavation. Read all element size and spacing requirements from the line at the depth the final excavation is expected to be ("original trench depth").

3. C-60 Soil includes all soil types that will stand long enough to install shoring and have a water level at or below the bottom of the excavation.

4. Type C-80 soil is soil that will not stand up long enough to install shoring. Generally shoring in C-80 soil has to be installed in short increments or driven into the soil as excavation is taking place. Prior to reaching 12 ft deep in marine clays such as San Francisco "Bay Mud", Gulf States Swamp Mud, etc... an engineer should be consulted. If there is any additional deflection or movement after elements are installed additional upright and strutting may be required.

5. Minimum shoring system length is 2 sets. The general rule for shoring system length is that it should be at least as long as the shoring system is deep.

6. This tabulation includes loading from a spoil pile set back 2 feet from edge of trench and no higher than 4 ft and foot traffic. All heavy equipment and vehicles to be set back at least the depth of the trench.

7. Wood members shall be minimum Douglas fir #2 and better, 3/4.

8. Plywood shall be minimum 3/4" CDX. Decrease horizontal spacing, double up plywood or decrease upright spacing if deflection is occurring due to soil movement.

9. Install strutting from top to bottom. Nailing can be done in stages by first using enough nails to stabilize shoring and then following through to make sure that required nail quantity is achieved.

10. This shoring system may be used in conjunction with Upright with Strut and Plywood, and Wale with Strut and Plywood System.

11. Alternative manufactured strut systems such as screw jacks, pneumatic struts, and single/double cylinder hydraulic jacks may be substituted for timber struts installed in accordance with their tabulated data.

12. If plywood is ½" Firform it is OK to eliminate the 2x12 upright and use struts at the tabulated spacing nailed directly to the Firform.

13. Two ¾" CDX plywood sheets may be used in lieu of one sheet of ¾" CDX with a 2x12 upright.

14. Aluminum fire service ladders with 4x4 cribbing may be used as an upright or waler. (see CMC Trench Rescue Manual)

Framing Notes

1. Use only 1 wedge set, do not stack them.

2. General rule for nailing strut connections-use two toenails (total 4 nails) on both sides of strut.

3. Struts may also be cut-to-fit and driven in without wedges, or Ellis post screw jacks may be used.

4. Struts may also be manufactured, see Note 11.

Installation Notes

1. Uprights may be nailed to plywood before or after setting plywood into excavation.

2. Move spoil pile and obstructions a minimum of 2 ft from trench edge and place edge protection before installing shoring.

3. Place ladder within 25 ft of work. Ladder must be secure and accessible.

4. While working off a ladder and until top strut is secured, workers may only work within waist level to lip of trench and must be tied off.

5. Remove struts from bottom to top. If there is sheeting movement when bottom strut is removed, leave shoring in place and bury or remove with power equipment from outside the trench.

California State Fire Training
1131 S. Street
Sacramento, Ca. 95811

CER, Inc.
Construction Engineering Resource
1837 Wright St.
Santa Rosa, Ca. 95404

Job #1373-3
10/1/2013
Drawn by: JT
Sheet 3 of 3

Copies of this form can be downloaded at cmcreSCUE.com/forms.
ALTERNATIVE for UPRIGHT

TABULATED DATA FOR TRENCH RESCUE SHORING

Note 1:

<table>
<thead>
<tr>
<th>2x4" + 2x8" UPRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD 4x4x12" OR 2x4x12" CROSS BLOCK PAIRED WITH 2x4" + 2x8" OR 2x6" + 2x8" (UPRIGHT ALTERNATIVES)</td>
</tr>
</tbody>
</table>

Sketch 1

CER, INC - CONSTRUCTION ENGINEERING RESOURCE, INC

1837 Wright St, Santa Rosa, CA 95404
Ph (707) 484-4704
Fax (707) 523-3808
Web Site: excavationsafety.com
E-Mail: jmitngr2@aol.com

Provided by CMC Rescue, Inc.
Copies of this form can be downloaded at cmcrescue.com/forms.
Tabulated Data for Trench Rescue Shoring

CER, INC CONSTRUCTION ENGINEERING RESOURCE, INC
Engineering Consulting Construction Management Claims Analysis

July 3, 2012

To: Firescope US&R Specialist Working Group

Attn: Battalion Chief Mark Brown, Chair

Re: 2x12 uprights and OSHA Subpart P Options 3 and Option 4

Question-Why is the use of the rescue shoring application tabulated data used under OSHA Option 3 - other tabulated data instead of Option 4 design by a registered civil engineer.

The short answer is:

Under option 3 designs utilizing tabulated data are configured by a competent person at the site utilizing tabulated information. The tabulated information can be utilized to develop a shoring system at any location. The tabulated data is developed and stamped by a registered engineer but the engineer is not necessarily involved in deciding the configuration of the shoring system.

Under option 4 design by a civil engineer the plan and shoring configuration is developed by a registered engineer and is specific to the site. The person constructing the shoring system follows the plan. Under this option there would have to be a civil engineer called in for every trench rescue situation. Also it is important to note that if the trench rescue shoring configuration needs to be altered or different than shown on the tabulated data an engineer must approve the changes.

From the OSHA oversight perspective with option 3 they look to see that the person that configured the shoring system adhered to the tabulated data and under option 4 they look to see if the engineered plan was adhered to.

I am attaching a document, CALIFORNIA TRENCH RESCUE SHORING, DRAFT DEVELOPMENT OF TABULATED DATA. I have been developing this document as this project has proceeded and is intended to be the basis for the shoring system we are developing.

Question-Can we use 2x8 uprights instead of 2x12 uprights.

Timber strutted trench shoring systems are based on soil arching between rigid elements of the shoring. The plywood sheeting is the least rigid and the timber or metal strut is the most rigid. The rigidity of the upright affects the rigidity of the sheeting and the effectiveness of the soil arching to transmit the loads ultimately to the struts. The following are the factors that determine that a 2x12 is required and a 2x8 is insufficient.
Tabulated Data for Trench Rescue Shoring

CER, INC
Engineering Consulting
April 30, 2014

CONSTRUCTION ENGINEERING RESOURCE, INC
Construction Management

To: Stan Klopfenstein
Executive Director
Regional Training Group
Los Angeles Area Fire Chief’s Assn.

Attn: Stan Klopfenstein

Re: Letter of 6/3/12-Firescope US&R Specialist Working Group
2x12 uprights and OSHA Subpart P Options 3 and Option 4

Stan;

This is in further response to the referenced letter and questions.

As stated in the letter the upright should be minimum 2x12. As shown in attached sketch it is also ok to use a 2x8 and 2x4 or 2-2x6 with a 4x4 or 2x4 cross block. This configuration provides equivalent shear and bending strength as the 2x12.

The tabulated data for this project was developed utilizing allowable stress design with timber values from the National Design Specifications for Wood Construction, 2005 edition, NDS developed by the The American Forest and Paper Association. These are the same standards adopted by all US building codes.

The soil loading values are developed utilizing apparent earth pressure theories developed by Terzoghi, Peck and Hanson. Engineering judgement is applied and drawn from over 25 years of experience in excavation shoring system design.

Best Regards

Joe Turner

1837 Wright St. Santa Rosa, CA 95404 Ph (707) 484-4704 Fax (707) 523-3808
Web Site: excavationsafety.com E-Mail: jmtengr2@aol.com

Provided by CMC Rescue, Inc.
Copies of this form can be downloaded at cmcrcrescue.com/forms.
Tabulated Data for Trench Rescue Shoring

CER, INC - CONSTRUCTION ENGINEERING RESOURCE, INC

- The 2x12 cuts the plywood free span to 18.25” and the 2x8 provides a free span of 20.25”. The rigidity of the plywood is increased by 25% with the 2x12 upright.

- The upright must have sufficient shear and bending strength to withstand soil loading. Utilizing allowable bending and shear strength for Douglas Fir boards a 2x12 has sufficient section strength to support a C-80 soil load between the struts and a 2x8 does not.

Also as a durability issue the 2x12 will not fail during lifting and shore installation while it is possible for a 2x8 to break in two during lifting of a long shoring set.

You are welcome to contact me at this e-mail or my phone (707) 484-4704 if you have further questions regarding this.

Best Regards

Joe Tumer